CCNs, fibulin-1C and S100A4 expression in leiomyoma and myometrium: inverse association with TGF-beta and regulation by TGF-beta in leiomyoma and myometrial smooth muscle cells.
نویسندگان
چکیده
Connective tissue growth factor (CTGF; CCN2) is considered to serve as downstream midiator of TGF-beta action in tissue fibrosis. We tested this hypothesis in paired leiomyoma and myometrium by evaluating the expression of TGF-beta1/TGF-beta3 and CCN2, the other members of the CCN family, CCN3 and CCN4, as well as fibulin-1C and S100A4, calcium-binding proteins that interact with CCNs. The regulatory function of TGF-beta1 on the expression of these genes was further evaluated using leiomyoma (L) and myometrial (M) smooth muscle cells (SMC). Real-time PCR, Western blotting and immunohistochemistry revealed that leiomyomas and myometrium express CCNs, fibulin-1C and S100A4, whose levels of expression with the exception of fibulin-1C were lower in leiomyomas and inversely correlated with the expression of TGF-beta1 and TGF-beta3 (P<0.05). The expression of these genes was menstrual cycle-independent and GnRHa therapy increased the expression of CCN2 in leiomyomas, while inhibiting CCN3, CCN4 and S100A4 in myometrium (P<0.05). TGF-beta (2.5 ng/ml) in a time- and cell-dependent manner, and through MAPK and Smad pathways, differentially regulated the expression of these genes in LSMC and MSMC. We concluded that CCNs, fibulin-1C and S100A4 are expressed in leiomyomas/myometrium with relative expression levels inversely correlating with TGF-betas and influenced by GnRHa and TGF-beta regulatory actions. The results suggest that unlike other fibrotic disorders, CCN2 (CTGF), at least at tissue level, may not serve as a downstream mediator of TGF-beta action in leiomyomas.
منابع مشابه
Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells
BACKGROUND Uterine leiomyomas are clinically significant tumours that may develop due to an altered differentiation pathway. We have previously identified a dysregulated retinoic acid (RA) pathway that reduced retinoic exposure in human leiomyoma surgical specimens, and have shown that the leiomyoma phenotype was characterized by excessive and disorganized extracellular matrix (ECM). OBJECTIV...
متن کاملmicroRNA 21: response to hormonal therapies and regulatory function in leiomyoma, transformed leiomyoma and leiomyosarcoma cells
Aberrant expression of microRNAs (miRNAs), including miR-21, and alteration of their target genes stability have been associated with cellular transformation and tumorigenesis. We investigated the expression, regulation and function of miR-21 in leiomyomas which develop from myometrial cellular transformation. The results indicated that miR-21 is over-expressed in leiomyomas with specific eleva...
متن کاملLeiomyoma and myometrial gene expression profiles and their responses to gonadotropin-releasing hormone analog therapy.
Gene microarray was used to characterize the molecular environment of leiomyoma and matched myometrium during growth and in response to GnRH analog (GnRHa) therapy as well as GnRHa direct action on primary cultures of leiomyoma and myometrial smooth muscle cells (LSMC and MSMC). Unsupervised and supervised analysis of gene expression values and statistical analysis in R programming with a false...
متن کاملIncreased expression of Bcl-2 protein in human uterine leiomyoma and its up-regulation by progesterone.
Uterine leiomyoma is the most common benign smooth muscle cell tumor of the myometrium. Although Bcl-2 protein is known to be an apoptosis-inhibiting gene product and to prevent apoptotic cell death in a variety of cells, there are no published data regarding whether human leiomyomas express Bcl-2 protein. In the present study, we examined the expression of Bcl-2 protein in leiomyomas in compar...
متن کاملGene Regulation Network Based Analysis Associated with TGF-beta Stimulation in Lung Adenocarcinoma Cells
Background: Transforming growth factor (TGF)-β is over-expressed in a wide variety of cancers such as lung adenocarcinoma. TGF-β plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor micro-environment. However, it is still a great challenge to explain the phenotypic effects caused by TGF-β stimulation and the effect of TGF-β stimulatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular human reproduction
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2006